Risks to Health Care Workers in Developing Countries

The first report of a health care worker infected with the human immunodeficiency virus (HIV) by a needle stick, published in the medical literature in 1984,1 launched a new era of concern about the occupational transmission of blood-borne pathogens. In the United States, universal precautions were implemented,2 regulations such as the Bloodborne Pathogens Standard were issued,3 and the rate of vaccination against hepatitis B virus (HBV) among health care workers increased dramatically.4 After a decade of phenomenal technological advances in sharp devices engineered for safety, the federal Needlestick Safety and Prevention Act, requiring the use of safer devices, became law in November 2000.5,6

The Risks

Protecting health care workers in developing countries, however — where even the basics of medical care are difficult to provide and where the protection of health care workers does not appear on any list of health care priorities — is a formidable challenge. It is all too easy to ignore a problem about which there are few data. Clearly, health care workers in developing countries are at serious risk of infection from blood-borne pathogens — particularly HBV, hepatitis C virus (HCV), and HIV — because of the high prevalence of such pathogens in many poorer regions of the world.7,8 HBV and HCV, for example, are endemic in sub-Saharan Africa. A study involving 803 schoolchildren in Ghana found that 61.2 percent had at least one marker of HBV infection and reported a seroprevalence of 5.4 percent.9 Of 303 subjects in three villages in Gabon, 19 percent were carriers of hepatitis B surface antigen, and in one village, 24 percent of subjects had HCV antibodies.10 By contrast, the prevalence of HBV and HCV in the U.S. population is approximately 4.9 percent and 1.8 percent, respectively.11,12 Furthermore, other lethal blood-borne pathogens, including Lassa virus, Ebola virus, and other hemorrhagic fever viruses, are endemic in some of the same tropical regions.7

Although the prevalence of blood-borne pathogens in many developing countries is high, documentation of infections caused by occupational exposure in these countries is scarce. Seventy percent of the world’s HIV-infected population lives in sub-Saharan Africa, but only 4 percent of worldwide cases of occupational HIV infection are reported from this region.13,14 By contrast, 4 percent of the world’s HIV-infected population lives in North America and western Europe, yet 90 percent of documented occupational HIV infections are reported from these areas (Fig. 1).13,14 It is unlikely that surveillance and reporting of occupational exposure to infected blood will be undertaken in places where postexposure prophylaxis, treatment, and workers’ compensation are lacking.

In developing countries, the risk of occupational transmission of blood-borne pathogens is increased by the excessive handling of contaminated needles that results from some common, unsafe practices.7,8,15-22 These include the administration of unnecessary injections on demand, the reuse of nonsterile needles when supplies are low, and the unregulated disposal of hazardous waste. Such practices pose risks of disease transmission to health care workers, patients, and communities at large.

In many developing countries, the high demand for injections derives from the belief that they are more effective than other forms of treatment. In Ghana, 80 to 90 percent of the patients who visited a health center received one or more injections per visit.23 Similar findings have been reported in Uganda and Indonesia.23 A correlation has been documented between the frequency of injections and the prevalence of HBV, HCV, and HIV in the population.7,8

Although many developing countries are replacing sterilizable syringes and needles with “auto-disable” and standard disposable syringes, where sterilization is still practiced it is often incomplete.24 Improperly sterilized injection equipment has been associated with outbreaks of HBV infection, Ebola fever, Lassa fever, and tetanus.7,8

Unnecessarily hazardous diagnostic equipment, such as nonretracting finger-stick lancets and glass capillary tubes (both of which have been associated with the occupational transmission of HIV14,23), is routinely used in developing countries to test for common tropical diseases such as malaria and filariasis. More than 100 million tests for malaria are performed each year.25 Because much of this testing is done in outreach programs, hazardous equipment endangers not only health care workers but members of the community as well — especially children, who may be tempted to play with blood-contaminated devices that have not been securely contained. Despite the availability of plastic or plastic-wrapped capillary tubes and automatically retracting lancets, which could nearly eliminate this risk,27,28 no formal recommendations have been made regarding incorporating the safer equipment into programs designed to eradicate tropical diseases.

Further exacerbating the risk to health care workers in developing countries is a lack of gloves, gowns, masks, and goggles to protect them from contact with blood. It was recently reported in Tanzania that birth attendants cover their hands with plastic bags to protect themselves from exposure to HIV during deliveries because there are no gloves available.29 There is also a lack of safe disposal systems for the secure containment and elimination of contaminated waste.24
THE COSTS

Protecting health care workers in developing countries from exposure to blood-borne pathogens will involve some cost. In industrialized countries, the cost of protective devices and equipment that reduce blood exposure may be offset by lower expenditures associated with postexposure testing and prophylaxis, medical treatment of infected workers, institutional insurance premiums, and workers’ compensation payments. In most developing countries, however, similar economic incentives do not exist; there is little reason for postexposure follow-up in countries that cannot afford prophylaxis, treatment, and compensation benefits.

Nevertheless, there are costs associated with failing to protect health care workers in developing countries. The loss of a wage-earning health care worker can be devastating to the financial security of the worker’s family. The loss of health care workers can also have a disproportionate effect on the fragile health care infrastructure of developing countries, where trained health professionals are scarce in relation to the overall populations they serve. Statistics from the World Health Organization (WHO) indicate that there are fewer than 10 physicians per 100,000 population in 15 sub-Saharan countries, as compared with nearly 250 physicians per 100,000 population in the United States. Similar discrepancies exist between the numbers of nurses in these countries and the number of nurses in the United States. Any reduction in the workforce further strains understaffed and overextended health care systems. Possibly the largest unrecognized cost of failing to protect health care workers is the loss of the national investment in the training of workers whose careers are cut short by occupationally acquired infections.

A comprehensive cost–benefit analysis of measures to improve the safety of health care workers in developing countries has yet to be undertaken. However, one study, in which the cost of syringe-transmitted disease was factored into the cost–benefit equation, found that switching to a higher-cost syringe with an auto-disable feature to prevent recycling and reuse would result in significant long-term savings in several sub-Saharan countries (Ekewume DU, Centers for Disease Control and Prevention: personal communication). The total cost per injection with the use of auto-disable, standard disposable, and sterilizable syringes was estimated on the basis of the cost of the equipment, the direct cost of medical treatment for HBV and HIV transmitted by nonsterile, reused syringes, and the indirect cost of lost years of productivity and lost years of life for infected persons. On the basis of this more comprehensive model, the mean cost per injection in Uganda was estimated to be more than five times as high for a standard disposable syringe as for an auto-disable syringe. Similar studies are needed to assess the cost–benefit ratio associated with providing protective equipment, such as safety needles and protective gloves, to health care workers in developing countries. When conducting cost–benefit studies of conventional as compared with safety devices, the cost of treating occupationally transmitted disease and the lost investment in medical and nursing education must be included.

CONCLUSIONS

Health care workers are a crucial resource in the health care systems of developing nations. In many countries, including those in sub-Saharan Africa, workers are at high risk for preventable, life-threatening occupational infections. Yet the protection of health care workers in these countries is largely ne-
nglected in national priorities for health care and by the international organizations that fund health care ini-
tiatives. We must not delay the implementation of ef-
efactive prevention strategies while we await more data.

International guidelines, endorsed by the appropri-
ate international agencies, are needed to define medi-
cally indicated and inappropriate uses of medical
needles. Implementing such guidelines should sub-
stantially reduce the number of injections that are giv-
en and, in turn, the incidence of occupational expo-
sure to blood and cross-infection between patients.

Training and education in injection safety, preven-
tion of sharps injuries, and universal precautions must be
incorporated into the curriculum in medical and
nursing schools in developing countries. Health care
workers must be instructed to limit the use of needles
strictly to medically indicated purposes. In addition,
sustained public-education campaigns are needed to
dispel much misinformation about injections.

Suppliers of diagnostic test kits that rely on the sam-
ping of capillary blood should be required to bundle
noninjurious devices with their kits, including plastic
or plastic-wrapped capillary tubes and automatically
retracting finger-stick lancets. The safe containment
of injection-related waste depends on improvements
in the disposal systems for medical waste. International
standards must be established for the placement, the
puncture resistance, the fluid resistance, the sealing
mechanisms, and the transportability of sharps-dis-
posal containers.

HBV-vaccination programs for health care workers
are needed in areas where the prevalence of HBV is
high. Priority should be placed on vaccinating the
health care workers who are at the greatest risk of con-
tact with blood and body fluids. Sentinel surveillance
systems are needed in selected developing countries
and geographic regions to identify high-risk practices
and devices and to help in the planning and testing of
effective interventions. Good decisions regarding the
allocation of limited financial and material resources
require accurate data.

Protective measures for health care workers must be
part of every program supported by international or-
ganizations for the prevention of the spread of HIV
and AIDS and other infectious diseases. The WHO
Department of Vaccines and Biologicals has already set
a precedent in this area by officially promoting im-
provements for birth attendants and other health care work-
ers who are at risk for contact with blood.

Along with international agencies, national budg-
cets should provide resources to ensure the safety of
medical personnel. These expenditures should not be
viewed as an increase in the cost of health care in de-
veloping nations but, rather, as insurance to protect
each nation’s investment in its health care work force.
The inevitable consequence of continued inattention
will be a mounting toll of disease and death among
productive health care workers in places where their
loss can least be afforded.

Charles Sagoe-Moses, M.D.
Ministry of Health
Accra, Ghana

Richard D. Pearson, M.D.
Jane Perry, M.A.
JANINE JAGGER, M.P.H., PH.D.
University of Virginia Health System
Charlottesville, VA 22908-0764

Supported by an International Training and Research in Emerging In-
fec
tious Diseases Fellowship at the Department of Internal Medicine, Division
of Geographic and International Medicine, University of Virginia (to Dr.
Sagoe Moses), funded by a grant (21204) from the Fogarty Center of the
National Institutes of Health.

REFERENCES
1. Needlestick transmission of HTLV-III from a patient infected in Africa.
2. Recommendations for prevention of HIV transmission in health care
3. Occupational Safety and Health Administration. Occupational exposure
64004-182.
the elimination of hepatitis B virus transmission among health care workers
5. Perry J. H.R. 5178 promises unprecedented protection to U.S.
frwebgate.access.gpo.gov/cgi-bin/getdoc.
cgi?dbname=106_cong_public_laws&docid=f:publ430.106.pdf)
7. Simonsen L, Kane A, Lloyd J, Zaffran M, Kane M. Unsafe injections in the
developing world and transmission of bloodborne pathogens: a review.
Bull World Health Organ 1999;77:789-800.
8. Kane A, Lloyd J, Zaffran M, Simonsen L, Kane M. Transmission of
hepatitis B, hepatitis C and human immunodeficiency viruses through un-
safe injections in the developing world: model-based regional estimates.
9. Martinson FE, Weigle KA, Mushahwar IK, Weber DJ, Royce R, Lem-
on SM. Seroepidemiological survey of hepatitis B and C virus infections in
10. Richard-Lenoble D, Traore O, Kombila M, Roingeard P, Dubois F,
Goudeau A. Hepatitis B, C, D, and E markers in rural equatorial African
11. McQuillan GM, Coleman PJ, Kruszon-Moran D, Moyer LA, Lambert


Downloaded from www.nejm.org on March 13, 2006. This article is being provided free of charge for use in Peru. Copyright © 2001 Massachusetts Medical Society. All rights reserved.


Copyright © 2001 Massachusetts Medical Society.